测绘中什么是坐标纠正,和坐标转换有什么区别?

坐标转换

微信号:MeetyXiao
添加微信好友, 获取更多信息
复制微信号

是不同

坐标系统

之间的坐标转换,理论上转换是不存在误差的。坐标纠正是在同一个坐标系统内,把错误的坐标想接近

真值

的方向变动。

怎样根据施工图纸放线?

之一步:轴线绘制及标注

也可以使用天正或理正建筑的轴线绘制功能绘轴网

向左转|向右转

第二步:承台桩绘制

第三步:承台标注

常规均可使用这个功能,若特殊的,则直接使用CAD自带的标注功能。

第四步:(最重要的一步) 这里需要与施工图逐轴逐承台的复核。

1、先复核轴线尺寸(下开->上开->左进->右进)   需要注意对轴号及附加轴线尺寸 2、再复核承台尺寸(从左到右、从上到下)   需要注意承台偏心尺寸,有时左偏会看成右偏。

以及承台到轴线尺寸的轴线号,这里若不细心有时会把轴号搞错,或把附加轴看成正轴  逐轴逐桩检查尺寸。

条件允许的话,自检完成后,再由其他人员复核一遍。

第五步:桩位编号 编号方案一般两种:

一、承台规则,则使用批量编号中统一承台编号。

二、承台较乱,或夹有条基等,则使用批量编号中统一全散编号,然后一小块一小块的逐区选择编号。

在编号过程中有时会出现漏号或重号等问题。可选择桩号检查、批量改号等功能。

没有承台边线或分布不规则的编号,使用统一全散编号。

第六步:坐标标注

由于现在建筑工地越来越大,一般都为多栋建筑,放线过程中,将桩位坐标数据统一为测量坐标是比较常用,也是较好的 *** 。

而在图中一般都是以轴线坐标(即俗称建筑坐标AB),所以这里需要进行转换坐标系定义。

1、总图坐标如下图:

2、AB坐标系(这里标注主要是方便临时检查计算,也可不标)

向左转|向右转

3、测量坐标系(套坐标,标注特征点即可,如四桩承台对角线,三桩承台底2桩等)

套完坐标,一定要将桩位图中的相应于总图上建筑四大角坐标位置标注3个以上,检查是否相符。

第七步:出施工放样图

这步就不说了,使用打印机打图啦。。。

第八步:数据输出文件 格式支持常用的好几种 。

施工放线是通过对建设工程定位放样的事先检查,确保建设工程按照规划审批的要求安全顺利地进行,同时兼顾完善市政设施、改善环境质量,避免对相邻产权主体的利益造成侵害。

《中华人民共和国城乡规划法》对核发“一书两证”的相关事项进行了明确,但对建设工程开工和竣工核准没有作具体的规定,致使部分建设单位和施工单位对开工验线与竣工验收的重要性认识不足,仅仅将此简单视为一般行政检查,申请核准工作滞后的现象时有发生。实质上,开工验线与竣工验收是规划实施管理不可或缺的两个行政许可环节。因此,许多地方在实践中,根据《中华人民共和国城乡规划法》、国家测绘局《关于印发测绘资质管理规定和测绘资质分级标准的通知》(国测管字[2009]13号)等有关法律、法规,结合本地实际,制定了建设工程放线、验线管理规定。

是房屋建筑工程开工后的之一次放线,建筑物定位参加的人员是:城市规划部门(下属的测量队)及施工单位的测量人员(专业的),根据建筑规划定位图进行定位,最后在施工现场形成(至少)4个定位桩。放线工具为“全站仪”或“比较高级的经纬仪”。

坐标变换的七个参数

坐标转换始终是测绘工作不可缺少的主题。坐标变换的 *** 很多,其中一些可以用相应的参数描述,其中使用最广泛的是七个参数。七个参数中的大多数用于不同坐标系之间的参考转换。

七个参数的由来

七个参数是什么,七个参数是什么?

七个参数的应用

参数的应用过程分为三个过程:旋转,缩放和平移。这三个过程的顺序是什么?让我们看一下公式:

减少到:

其中,X1是原始空间坐标,X2是目标空间坐标,K是比例,R是旋转,而dX是平移。

您可以看到顺序是旋转,缩放和平移。当然,相反的是平移,缩放和最终旋转,这是一个可逆的过程,有利于两个空间坐标的来回转换。为了方便起见,我们将旋转,缩放和平移定义为七个参数的正应用。平移,缩放和旋转定义为反应的七个参数。

我们可以看一下坐标系的EPSG定义:

七个参数的定义称为towgs84,字面意思是转换towgs84所需的七个参数。它还可以用作不同坐标系之间的参考转换。在基线转换之前,EPSG必须同时指定原始towgs84和目标towgs84七个参数。

这就是问题所在!

两个七参数参考如何转换?为什么与WGS84有关?与我们熟悉的工程明星和SGO坐标变换相反,通常只使用一个七参数的情况,如何理解?

首先,大多数工程星和SGO的转换方案都是从WGS84坐标转换为XIAN80,Beijing54,CGCS2000等坐标。这里使用的七个参数是直接从原始坐标系到目标坐标系的七个参数。EPSG定义的七个参数(参考)是将坐标系本身转换为WGS84坐标的七个参数。实际上,只要两个坐标系都知道如何转换为WGS84坐标,就可以间接知道两个坐标系之间的参考变换。

至于为什么是WGS84,则是历史原因造成的。由于WGS84是建立的之一个全局坐标系,因此卫星定位通常会获取WGS84的空间或地面坐标。为了在其自己定义的坐标系下转换为坐标,它需要与WGS84建立自己的关系。

最后,EPSG如何使用两个七个参数进行参考转换。回到先前应用七个参数的正负问题,原始坐标系的towgs84将原始坐标转换为WGS84的坐标(以下称为84坐标)。这是前向应用程序。因此,我们获得了84个坐标,并使用目标坐标系的towgs84获得了最终坐标,该坐标用于反应。实际上,我们工程星的原始坐标系和目标坐标系以及SGO坐标变换可以指定七个参数,但是低频常常被我们忽略。但是与上述过程相反,原始坐标系的七个参数用于反应,目标坐标系的七个参数用于应用。随着华南地区的发展壮大以及与国际市场的进一步融合,将有越来越多的场景使用这两个七个参数进行基准转换,例如我们的新软件GIStar。我们需要很好地了解其原理和过程,并了解现有功能和新功能之间的区别,以使坐标转换更加方便。

* 七个参数的详细信息

towgs84的对面是fromwgs84,在旋转和缩放较小的前提下彼此相对。Fromwgs84可以参考trimble的坐标转换工具。如何区分wwgs84和wwgs84?好了,很容易理解,正在使用七个参数将非84坐标转换为84坐标,因此这七个参数是towgs84; 使用七个参数将84坐标转换为非84坐标,因此此参数为fromwgs84。我们的工程明星和SGO将wgs84作为原始坐标系的转换场景,并且使用的所有七个参数都是fromwgs84。

返回到前面提到的公式,在这种情况下,X1是84坐标,X2是非84坐标,例如XIAN80。然后,由k,R和dX组成的七个参数是fromwgs84,而towgs84是X2与X1交换时。

七个参数的解

要求解7个参数,我们至少需要7个方程。一对空间坐标可以列出3个方程,这意味着我们至少需要3对点才能通过最小二乘法求解7个参数。当然,点数也要注意,不仅3点好,也不要点越多越好,具体需要参考实际情况。

作为参考转换的工具,这七个参数适用于大区域甚至整个世界。我们需要选择该区域中均匀分布的控制点来解决这七个参数。小区域的七个参数不适用。同样,这里的towgs84和fromwgs84是非84坐标,目标是84坐标,七个参数是fromwgs84和towgs84。

以上是坐标变换七个参数的介绍,希望对您有所帮助。

the seven parameters of coordinate transformation

工程项目开工前测绘园提供高程点和坐标点后是否要办交接手续

工程项目开工前测绘园提供高程点和坐标点后坐标转换要测绘资质吗:是需要办交接手续坐标转换要测绘资质吗的。

工程坐标转换要测绘资质吗的测量成果包括测量原始记录资料、各种内业成果、测绘最终产品、测量桩橛、点之记录和各种精度分析、评定资料等坐标转换要测绘资质吗,并要做好交接工作。

从像点在单张影像中的坐标经过哪些转换转到地面大地坐标系?

摘要

在现有成果向 2000 国家大地坐标系转换工作中,各省市都做了很多理论研究和实际转换工作。本文阐述了现有成果向2000国家大地坐标系转换的 *** ,对不同数据、不同 *** 转换过程中常见的问题进行汇总、整理,并分析问题产生的原因及对成果的影响,为今后现有成果向 2000 国家大地坐标系转换工作提供参考和建议,以确保成果转换的质量。

关键词:CGCS2000;坐标转换;大地控制点;基础地理信息数据;GNSS基准站;三角点;4D产品

自 2008 年 7 月 1 日起,我国启用 2000 国家大 地坐标系( CGCS2000) ,各地有关部门开展了现有各 类测绘信息成果到 CGCS2000 的转换工作,积极推 进 CGCS2000 的推广使用。为做好启用 CGCS2000 的实施工作,国家测绘地理信息局于 2008 年 7 月组 织编制了《启用 2000 国家大地坐标系实施方案》和《现有测绘成果转换到 2000 国家大地坐标系技术 指南》。为加快 CGCS2000 推广使用工作,进一步指 导各部 门、各单位顺利完成原有坐标系成果向 CGCS2000 转换,确保转换技术 *** 正确,国家测绘 地理信息局于 2013 年 6 月组织编制了《2000 国家 大地坐标系推广使用技术指南》和《大地测量控制 点坐标转换技术规程》。CGCS2000 转换涉及的测 绘地理信息成果主要包括大地控制点类成果( GNSS 基准站、GNSS 控制点、三角点) 和基础地理信息数 据成果( DLG、DOM、DEM、DRG) 。文献[1—2]从总 体上介绍了 CGCS2000 的构建、精化、维持和更新, 以及可用于转换工作的国家级成果。文献[3—11] 研究了 GNSS 基准站、大地控制点、4D 产品的转换 *** 。文献[12] 探讨了转换的检查 *** 。本文对 省级坐标转换中存在的常见问题进行梳理和分析。

坐标转换 ***

1. 大地控制点类成果

( 1) 坐标归算

本 *** 适用于非 CGCS2000 的省级 GNSS 基准 站和卫星大地控制点坐标向 CGCS2000 的坐标转 换。即对拟转换点采用与周边稳定的 IGS 站及国家级的 GNSS 连续运行基准站进行联测的 *** ,获得 各站点在现 ITRF 框架、观测历元下的位置,经过历 元归算、板块运动改正、框架转换[13]3 个步骤进行 坐标计算。用这种 *** 进行转换必须要知道网中各 站的速度场。

( 2) 参数转换

本 *** 适用于未联测已知点的卫星大地控制点 和三角点坐标向 CGCS2000 的坐标转换。即按照转 换区域选取适当的转换模型( 布尔莎模型、三维七 参数模型、二维七参数模型、三维四参数模型、二维 四参数模型、多项式拟合模型等) ,选择重合点,经 粗差剔除后计算转换参数,进行坐标转换。

2. 基础地理信息数据成果

基础地理信息数据成果转换针对分幅数据或数 据库实体数据,采用不同的坐标转换 *** 。比例尺 大于 1 ∶ 1 万的 DLG、DEM 数据一般采用高分辨率 的格网坐标改正量进行逐要素点转换的 *** 完成转 换; DOM、DRG 数据一般采用平移或纠正的 *** 完 成转换,转换参数一般采用高分辨率的格网坐标改 正量进行表达。

常见问题及分析

1. 大地控制点类成果

( 1) 坐标归算

采用坐标归算 *** 进行坐标转换的关键工序主 要有: 基准控制点( IGS 站、国家级 GNSS 基准站、国 家 GNSS 大地控制点) 的选取、高精度数据处理、板块 运动改正、框架转换等。坐标归算常见问题主要集中在基准控制点的选取和板块运动改正两个方面。

①起算点坐标非国家测绘行政主管部门权威发 布的 CGCS2000 坐标部分省建立基础控制网采用的 GCS2000 起算 点坐标非国家测绘行政主管部门权威发布,或不能 量值溯源到国家测绘行政主管部门权威数据。

表 1 为某省 C 级控制网建立时采用的 IGS 站或 国家级 GNSS 基准站的 CGCS2000 坐标与国家权威 数据的较差统计值,这一差异导致转换数据整体出 现系统性偏差。

②起算点精度等级达不到相应等级控制点要求 部分省市坐标基准框架或基础控制网的建立未与 IGS 站或国家级 GNSS 基准站进行联测,仅与本 省市及周边省市 2000 国家 GPS 大地控制网( 三网 平差) 控制点进行联测,经约束平差获得 CGCS2000 坐标。这种 *** 在对 C、D 级 GPS 控制点进行转换 时确保了成果与本省区域内的其他成果的一致性。省级 GNSS 基准站作为省级大地基准的骨干和主要 支撑,采用这种 *** 在当时历史条件下和过渡期内 实现了 CGCS2000 在省级的快速推广使用,但在现 阶段不利于维持省级三维、动态地心坐标系统,不利 于保证大地控制网点位三维地心坐标的精度、现势 性及全国的统一。

表 2 为某省采用坐标归算 *** 以 A、B 级点为 基准建立的 56 个省级 GNSS 基准站 CGCS2000 坐标 的外符合精度情况统计,可以明显看出在空间三维 方向上均存在一定的误差,并且均具有系统性偏差。这些误差已经对 GNSS 基准站的服务造成了一定 影响。

③未考虑框架不同历元间由于板块运动引起的坐标变化值

部分省在进行历元归算后,未考虑计算框架所 对应历元下坐标从观测历元到需转换历元之间,由 于板块运动引起的坐标变化值,把坐标变化值带入 到转换成果中,引起转换成果误差。

ITRF 2005 转换到 ITRF 2000 框架时站的速度 场起主要作用,因此若所确定的速度场不准确对转 换结果有很大的影 响。而 从 ITRF 2000 转 换 到 ITRF 97 框架下起主要作用的是框架之间的转换关 系,对所需转换的站的速度场要求不是很高[13]。

表 3 为部分点不同年代观测数据联合平差时,因板块运动而引起的坐标变化值无法消除,最终转换成果产生的系统误差。

( 2) 参数转换

采用参数转换 *** 进行坐标转换的关键工序主 要有: 转换分区、转换模型的选取、重合点的选择和 剔除、转换参数计算、外部检核等。参数转换常见问 题主要集中在转换分区、重合点覆盖范围、重合点的 剔除、检核点分布 4 个方面。

1) 由于 1954 北京坐标系的坐标是采用逐级控 制分区平差的 *** 推算的,存在明显的平差变形,甚 至个别地区在分区或锁网接合部点出现了成果不一 致或产生了裂缝[14],因此在这类地区不宜采用一个 分区和一套转换参数,以避免产生较大误差。

2) 重合点选取的基本原则为等级高、精度高、 局部变形小、分布均匀及覆盖整个转换区域。当重 合点不能覆盖整个转换区域时,不能覆盖的区域转 换参数只能通过外推得到,但转换精度可能随外推 距离放大而急剧损失,导致转换后的成果与邻省成 果间存在不接边的情况。对于从国家申领的具有 CGCS2000 坐标的一、二、三、四等天文大地网点,不 加区别全部用于转换模型的计算,造成了重合点利 用的等级和精度不统一,转换精度不高,局部变形 较大。

3) 粗差点剔除不严密,不严格按照大于 3 倍点 位中误差进行,易导致局部转换参数的变形。粗差 点的剔除还应包括造成重合点分布不均匀的点,如应更大限度避免模型中狭长三角形的出现,这种点 可作为外部检核点使用。

4) 利用未参与计算转换参数的重合点作为外 部检核点,其点数应不少于 6 个且分布均匀。外部 检核点不足时应进行野外实测检核,尤其应注意对 转换区域边缘的检核。

2. 基础地理信息数据成果

( 1) DEM 转换

由于生产 DEM 成果的过程数据( 等高线、特征 线、高程点等) 一般不存在,DEM 转换不能按照相关 生产技术规程构造 TIN 并内插重新生成 DEM,一般 选用高分辨率格网坐标改正量并采用平移或双线性内插的 *** 对图幅进行坐标转换,同时参考像素分 辨率确定起算坐标进行数据重采样,按 CGCS2000 新的图廓及重叠像素进行图幅裁切,更改数据头文 件中定位坐标,修改元数据相关条目。DEM 转换常 见问题主要有以下几个方面:

1) 采用平移 *** 进行 DEM 转换,以图幅 4 个 角点平移量的平均值作为图幅左下角点改正量,不 进行数据重采样,DEM 数据仍以原坐标系图廓范围 进行单幅存储。

这种 *** 的图幅起始点坐标为非格网间距的整 数倍,因相邻图幅坐标平移量不一致导致图幅不接 边。在后期 DEM 数据应用时,接边区域内高程仍需 处理,并造成重采样精度损失。

2) 采用平移 *** 进行 DEM 转换,坐标平移量 归整化为 DEM 格网间距的整数倍,不进行数据重 采样。

这种 *** 会产生 DEM 局部相邻图幅间相差一 排( 一列) DEM 格网点,导致局部图幅接边处格网数 值不唯一,出现少一排( 一列) 或重合一排( 一列) 的 情况( 如图 1 所示 ) 。因坐标平移量规整化为格网 点间距整数倍,导致 DEM 转换精度损失,进而转换 精度超限。

表 4 为某省不同地形类别区域的 DEM 转换精度统计,可见这种 *** 在山区容易导致部分图幅转 换精度超限。

( 2) DOM 转换

DOM 转换一般选用高分辨率格网坐标改正量 采用平移或纠正的 *** 对图幅进行坐标转换,按 CGCS2000 规定的新的图廓及重叠像素进行图幅裁 切,按像素关系计算移动量( 像素数) ,更改数据头 文件中定位坐标,修改元数据相关条目。DOM 转换 常见问题主要有以下几个方面。

DOM 转换过程中将平移量规整化为 DOM 地面 采样间距的整数倍后对整图进行坐标平移,以及局 部相邻图幅间相差一排( 一列) DOM 栅格点,导致局 部相邻图幅接边区域数值不唯一。这种转换 *** 虽 不会对 DOM 转换精度造成重大影响,但转换工作 并未全面完成,宜对接边成果进行重采样处理,完善 转换工作。

建议及措施

1. 大地控制点类成果

1) 平差计算过程中的起算控制点 CGCS2000 成果不能仅利用向国家申领的 2000 国家 GPS 大地 控制网成果( 三网平差成果,地心坐标精度平均优 于 3 cm) 中的大地点成果,需要更加充分利用精度 更高的 2000 国家 GPS 大地控制网中的 GNSS 连续 运行基准站坐标( 坐标精度为毫米级) 。

2) 在坐标归算过程中顾及板块运动的特性和 不同历元间框架的严格转换关系,充分利用可用于 转换工作的国家级最新速度场成果 CGCS2000 板块 运 动 模 型 ( China Plate Model-CGCS2000,CPM- CGCS2000) 和 CGCS2000 格网速度场模型。CPM- CGCS2000 是目前国内最精确的相关模型,解决了 CGCS2000 动态维持及我国已有基础测绘成果转换 的难题,适用于基于 ITRF 框架非 2000 历元下各类 GNSS 定位成果到 CGCS2000 的转换。

3) 各省与邻省进行重合点数据交换,建立参数 转换模型的重合点尽可能覆盖全部转换区域; 不能 覆盖的转换区域转换参数可通过平滑外推得到,但 要加强外部检核工作和邻省的接边工作。

4) 采用不同转换模型进行比较分析,绘制点位 残差分布图和点位残差等值线图,选择更优模型进 行坐标转换。采用多项式拟合模型进行坐标转换, 还应参考布尔莎模型、二维七参数转换模型等适合 于全国及省级范围的转换模型进行精度分析,剔除 残差较大点。

2. 基础地理信息数据成果

现有成果转换工作量大,且各省现有基础地理 信息数据成果为过渡性成果,随着基础测绘工作的 持续开展,新的基础地理信息数据成果宜直接采用 CGCS2000 生产,各省市对现有成果的转换工作,以 满足实际应用为目的进行,转换过程中应保证转换 数据的完整性、一致性、唯一性,确保转换到位、接边 到位。

加强转换工作技术方案和技术路线的全面质量 评估,避免数据转换出现重大质量问题。

结束语

现有成果向 CGCS2000 转换工作是一项系统工 作,在转换过程中,尽管各省市结合自身情况,开展 了一系列的理论研究和实际转换工作,但是在转换 中仍然存在一些问题。本文对检查中发现的转换工 作 相 关 问 题 进 行 整 理 分 析,旨 在 为 今 后 的 CGCS2000 转换工作、为 CGCS2000 推广应用中的生 产和质量检查工作提供参考,确保成果转换的质量。

参考文献

[1] 陈俊勇,杨元喜,王敏,等. 2000 国家大地控制网的构 建和它的技术进步[J]. 测绘学报,2007,36( 1) : 1-8.

[2] 宁津生,王华,程鹏飞,等.2000 国家大地坐标系框架 体系建 设 及 其 进 展[J]. 武 汉 大 学 学 报 ( 信 息 科 学版) ,2015,40( 5) : 569-573.

[3] 王文利,程传录,李东,等.1954 年北京坐标系和 1980 西安坐标系精度分析及其适用性研究[J]. 大地测量 与地球动力学,2012,32( 5) : 68-71,77.

[4] 成英燕,程鹏飞,秘金钟,等. 基于现框架下的省市级 CORS 站 到 CGCS2000 的 转 换[J]. 测 绘 通 报,2011 ( 7) : 1-3,14.

[5] 成英燕,程鹏飞,顾旦生,等. 三维 4 参数模型实现地 图到 CGCS2000 的转换[J].武汉大学学报( 信息科学 版) ,2010,35( 6) : 747-751,755.

[6] 郭春喜,王文利,白贵霞,等. 坐标系转换中全国高精 度高分辨率格网改正量的确定[J]. 测绘科学,2013, 38( 2) : 5-7.

[7] 吕志平,魏子卿,李军,等.CGCS2000 高精度坐标转换 格网模 型 的 建 立[J]. 测 绘 学 报,2013,42 ( 6) : 791- 797.

[8] 成英燕,程鹏飞,秘金钟,等.大尺度空间域下 1980 西 安坐标系与 WGS-84 坐标系转换 *** 研究[J]. 测绘 通报,2007( 12) : 5-8.

[9] 韩买侠,郭 春喜,王 文利,等. 小比例尺基础数据由 1980 坐标系向 2000 坐标系转换的 *** [J]. 测绘科 学,2014,39( 1) : 32-34,58.

[10] 庞尚益,郭春喜,程传录. 国家基本比例尺 DLG 数据 坐标转换 *** 的研究[J]. 测绘科学,2006,31 ( S1) : 28-29.

[11] 郭春喜,韩买侠. 数字高程模型( DEM) 和数字线划图 ( DLG) 的坐标转换 *** [J]. 测绘通报,2013( 1) : 57- 59.

[12] 张训虎.现有成果转换为 2000 国家大地坐标系成果 检查 *** 探讨[J].工程勘察,2015( 2) : 85-89.

[13] 程鹏飞,成英燕,文汉江,等.2000 国家大地坐标系实 用宝典[M].北京: 测绘出版社,2008: 130-132.

[14] 董鸿闻. 1954 年北京坐标系的历史注释[J]. 东北测 绘,2001,24( 2) : 16-17,23.

-----END-----

社 *** 流/原创投稿/ 商务合作

温馨提示:近期,微信公众号信息流改版。每个用户可以设置 常读订阅号,这些订阅号将以大卡片的形式展示。因此,如果不想错过“测绘之家”的文章,你一定要进行以下操作:进入“测绘之家”公众号 → 点击右上角的 ··· 菜单 → 选择「设为星标」